
Mobile

Automation

Testing using

Appium

WHITE PAPER

Mobile Automation Testing using Appium | WHITEPAPER

Table of Contents
1 Introduction

2 Why Is Appium The Best Choice?

3 Common Mistakes

4 Appium Best Practices

Proof Of Concept

Effort Estimates

UI Locator Strategy

Framework

Cloud Integration To Speed Up Execution

5 GRAFT: Our Rapid Automation Framework for Testing

6 Conclusion

Lead Authors
Geetha Pavani A
Sai Pawan L

Mobile Automation Testing using Appium | WHITEPAPER

Executive Summary

Due to the extensive amount of benefits that the mobile apps bring including easy

accessibility, enhanced user engagement and retention, there has been a drastic

shift towards the usage of mobile apps. Given the increased use of the mobile

apps, testing those apps has become even more challenging in terms of covering

an exhaustive list of models. This paper outlines the basic strategies and structure

for a successful Mobile Automation Testing using Appium. It highlights the

common mistakes that are being made while automating the mobile testing

process. It also defines the key best practices to be followed to have an efficient

mobile app test automation using Appium.

Introduction

The adoption of mobile phones in the last decade has been staggering to say the

least. Today, we have close to 5 billion mobile users and roughly 50% of the web page

views across the world are from mobile devices. This astonishing increase in the

smartphones usage worldwide shows no decline and if the forecasts are to be

believed, the growth is not coming down anytime in the near future. Alongside the

smart phones, the market for mobile applications also have grown at an equally rapid

pace, if not more. Growth always brings with it the associated challenges. Mobile apps

face the challenge of supporting multiple devices, platforms and operating systems

while providing a consistent experience to the end users. This not only opens a

development challenge but also an equally tough challenge of testing these

applications to ensure a flawless end user experience. Given the nature of problem

and the number of variables involved, manual testing is an extremely difficult

proposition and hence the need for mobile automation testing.

| 03

Why Appium is best choice?

Appium became the major player in test automation landscape due to following

reasons.

Free of cost: The best of its features are free of cost and open source. Also, it

doesn’t require any device installation to bridge the interaction between the

software and the application under test.

Highly Flexible: It supports multiple scripting languages like Java, Python, C#,

Javascript etc. that makes it easy for the user to select a scripting language based on

their convenience and work across multiple platforms. Also testing the native apps

using Appium doesn’t require any SDK or app recompiling. In fact, in most of the

cases, it doesn’t even require any code change to work on Android and iOS.

Easy to learn: As Appium is built on Selenium, it doesn’t require any time for the

Selenium engineers to ramp up on the tool. Apparently, Appium is a wrapper that

translates Selenium commands into iOS and Android commands to interact with

the elements of the application under test. Furthermore, all Selenium functionality

is available in Appium.

High Community Support: Another major benefit which Appium brings in is the

large community of contributors available on all the major networking portals and

are striving to keep the users updated on the latest trends on the tool.

| 04

Mobile Automation Testing using Appium | WHITEPAPER

Appium Inspector: This can be used as record and playback option like Selenium

IDE. Using this the actions on the native apps can be recorded and converted to a

selected scripting language for further optimization and customization. But the Appium

Inspector isn't compatible with Microsoft Windows currently.

Cross-Platform Automation: Appium supports cross-platform automation

wherein tests can be built in any language for both Android and for iOS. These

can be executed without any change in the code. It enables tests to be written and

run across multiple devices simultaneously, reducing time to market and man-

hours of manual test effort, and increased testing coverage across devices that

would otherwise not be tested due to time constraints. It can integrate easily with

emulators, simulators and cloud environments which could be useful in bringing

down the execution time and improve ROI.

Existing Frameworks: Users are free to use their own test practices or

frameworks from the already available lot. The framework also allows automation

on native, web and hybrid apps. Testing is possible on a real device, simulators or

emulators.

Integration with CI tools: Appium framework can be easily integrated with all the

leading CI tools that enable integration with the development release cycles.

$ Free of cost

 Highly Flexible

Easy to learn

High Community
Support

Appium Inspector

Cross platform
Automation

Existing frameworks

Integration
with CI tools

| 05

Common mistakes

 Not performing PoC on the application before the main automation phase

 Not using best locator strategy that might increase the time taken to identify

the element

 In Android application, Appium won't identify the elements if it's not visible on

page (those are present in page). So we need to swipe the page and check

those elements.

 Missing to set environment variables for ANDROID_HOME and JAVA_HOME

after installing Java and Android SDK

 Missing to map xcode path for the correct version of xcode as more than one

xcode version is possible on the same machine.

 Skipping ideviceinstaller and iOS-deploy installation on Mac machine to execute

scripts on iOS device. If there is below error even ideviceinstaller is installed

properly on the machine, it can be resolved by setting the below value in project

Run configuration Let me know if you need any further info

Error: Could not initialize ideviceinstaller; make sure it is installed and works

on your system(iOS)

Name: PATH

Value : /usr/local/bin:/usr/bin:/usr/sbin:/sbin

 If robot class commands are present in the scripts and are executed on Mac

machine, background java process would be started and a Java Cup icon is

placed in the Dock, it causes the currently active window to lose focus. To

resolve this, please specify the attribute "-Dapple.awt.UIElement=true" for jre

 For iOS, only one device or simulator can be run on a mac machine at a time.

Careful management and planning are required while scheduling tests across

multiple devices at the same time

| 06

Mobile Automation Testing using Appium | WHITEPAPER

Best practices to be followed

for mobile app automation with Appium

Proof of Concept

In order to have a successful mobile test automation process, it is highly

recommended to have a pilot for all the applications as that would give an insight

on the estimates and would uncover the challenges and help in proper planning.

The following points should be kept in mind while implementing the POC:

 It should be implemented in critical scenarios to understand the scope as the

time taken to automate is different for each app type and OS.

 It should be done on the elements that are unique to each OS. For example:

the date and time picker.

 Dry run should also be performed to understand the efforts involved

Efforts Estimation

Efforts estimates should cover the following:

 Environment setup

 Scripting the test cases with the challenges faced during the Proof of Concept

 Effort required to make the script compatible with different Operating Systems

and devices

 Time taken for the “Dry Run”

 Estimates should include time for analysing, development and unit testing of

each scenario

UI Locator Strategy

A proper strategy should be in place to make Appium identify the element in the

minimum time possible. The locator should also work if the hierarchy of the

elements gets changed in the UI.

| 07

Mobile Automation Testing using Appium | WHITEPAPER

The order of the locators to be considered are as follows:

1. Id(Accessibility ID)
2. Name
3. Value
4. ClassName
5. Xpath

Consider the xml tag of the element shown below.

While executing Appium scripts the below statement is displayed in

Appium logs which means those are the only valid locators that can

be used in recent Appium versions. Even we may see many

suggestions in intelligence like By .tagName but they are not

supported by latest versions of Appium.

[debug] [BaseDriver] Valid locator strategies for this request:

xpath, id, name, class name, -ios predicate string, accessibility id

<XCUIElementTypeButton name="Drive" label="Drive" value="" dom="" enabled="true" valid="true" visible="true" hint=""

path="/0/0/0/1/0/0/1/0" x="2" y="619" width="184" height="48"></XCUIElementTypeButton>

ID(Accessibility ID),Name,Value:

On both platforms Android and iOS, in order to identify a single or

multiple elements, considering their accessibility id is usually the

best and the preferred way. In iOS there is no concept of ID as we

have in android but we can use accessibility id to identify the

elements. In the example shown above the name or label is the

accessibility id of the element.

driver.findElement(By.ID(“Drive”)).click();

driver.findElementByAccessibilityId(“Drive”).click();

driver.findElement(By.name(“Drive”)).click();

driver.findElementByName(“Drive”).click();

All these statements will click on the element with name “Drive”.

Whenever we want to find the element by name, try to use any one

of the first two statements because in Appium 1.6, “name” was

replaced with accessibility id.For Android, id is the element's

Android:id.

 For iOS strategy is different. Appium will first search for an

accessibility id that matches. If there is no match fount, a string

match will be attempted on the element labels. Finally, if the id

passed in is a localization key, it will search the localized string.

 For iOS it is the full name of a class and will begin with XCUI,

such as XCUIElementTypeButton for a button.

Fo r A n d r o i d i t i s t h e f u l l y q u a l i f i e d n a m e l i

keandroid.widget.EditText for a text field.

 In case if there is no option other than xpath, then try to use relative

xpath instead of absolute xpath because if absolute xpath is used in

the locator there may be changes to the parent elements in future

which will result in failure of element identification.

 Try to avoid XPath locators unless there are no other alternatives.

In general, xpath locators are slower in identifying the elements,

than other types of locators like accessibility id, class name. They

are slow because xpath location is not natively supported by

Apple's XCTest framework.

| 08

Be very specific when locating elements by xpath. Such locators like .

Such locators like

driver.findElement(By.xpath("//XCUIElementTypeButton[@value=’sample’]"))

is faster than

driver.findElement(By.xpath("//*[@value=’sample’]"))

 Multiple nested findElement calls would be faster than to perform a single call by

xpath.

driver.findElement(a).findElement(b) is faster than driver.findElement(c)

where a and b are non-xpath locators and c is xpath locator.

Framework

The different factors that decide the effectiveness of the framework are enlisted

below:

 Defined Folder Structure: Framework should have a well-defined folder

structure to easily trace the items

 Portability: The framework should work as expected with any folder hierarchy,

any drive location and type of application

 Error Handling and Recovery Management: The process to be followed when an

error or exception occur must be handled in framework rather than in the scripts

 Functional libraries for general use and project specific purpose should be in

separate folders for ease of maintenance

 Test data to be maintained on a module basis to update them as and when

required without touching the scripts. Also it is needed to ensure the security for

the test data

 The framework should be environment independent. By implementing few things

that can be configured like browser, OS etc. we can make the framework

environment independent.

 The selection of the test scripts to be executed and batch creation should be

provided

| 09

Mobile Automation Testing using Appium | WHITEPAPER

 There should be an option to select the environment details like OS and device

versions along with the environments like emulator or simulator or device or cloud

 There should be a mechanism to schedule the execution of batches

 Test results should be easily understood by any tester with more details on the

condition of the application under test and test data used. This will help the tester

to reproduce the defect. Capturing the screenshot will also add value to decide if

it is a defect or script failure

 There should be a configuration mechanism to email the results to selected

recipients.

 Scripting guidelines should be documented

 Naming conventions and standard to be followed should be documented

 Proper trace-ability should be visible to understand the coverage of the

automation and execution of the defects

 After the execution, the framework should provide some data for analysis and

metrics preparation

 Test framework should be easy to expand and maintain with fewer references to

paid tools or other third-party libraries

Above all these, there should be a continuous improvement plan to make the

framework more matured. This will lead to a reduction in the manual effort by

replacing it with the batch execution.

Cloud integration to speed up execution

As it’s costlier to maintain a lab (different devices that cover different device and OS

combination) to execute on the different OS and devices, it’s easy to get the script

executed on the cloud environments like Sauce labs or Test object. This will not only

speed up the execution but will also provide a good test coverage.

| 10

Mobile Automation Testing using Appium | WHITEPAPER

GRAFT: Ours Ready Automation Framework for Testing

We own a self-crafted integrated accelerator which enables end-to-end

automation of Android and iOS applications. It speeds up the automation of

functional and regression testing by leveraging the existing automation tools

thereby reducing the dependency on highly skilled testing personnel.

The accelerator brings down the initial development effort by 30% by utilizing the

predefined methods in the framework. It brings in multiple other benefits including:

 Reduced overall cost due to the open source tools being used

 Increased flexibility of time and resources

 Reduced manual regression test effort by 60% to increase coverage of

product areas

 Increased software quality and reliability due to automated testing methods

 Reduced defects and time-to-market

 Reduced automated test development time and faster ROI realization on test

automation

 Improved test coverages by executing the scripts on cloud on different

environments and platforms including OS versions

 Reduced test automation development phase by over 30%

 Reduced maintenance cost

 Facilitates better communication between various stakeholders and

developers, using tables for representing tests and reporting their results

 Reduced dependency on technically skilled resources

| 11

Mobile Automation Testing using Appium | WHITEPAPER

Conclusion

In order to achieve success in test automation projects using Appium, one should

always consider the below enlisted points

 Resources should be skilled enough to identify the test cases,

customize, implement workarounds and troubleshoot

The framework in place should be highly scalable and easy to maintain

 All the best practices discussed in this paper must be implemented to avoid

the common mistakes and achieve success

| 12

