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Abstract 
Despite significant advancements in technology, modern machine learning applications continue to face computational 
challenges, as processing large amounts of data through classical computation remains time intensive. In the coming years, the 
need to process a large amount of data from various sources needs to be captured by multiple technologies such as the internet of 
things (IoT), video camera, etc. 

 

Even the world’s fastest computers require days or even months to train a classical AI algorithm to make self-driving decisions for a 
car that requires a set of computationally intensive calculations on new data additions, thus creating complex relations within the 
data variables. 

 

Quantum machine learning applications can perform highly accurate calculations faster than classical computing systems due to 
high computing efficiency thus impacting insight generation through large databases or factoring in large numbers. After studying 
multiple quantum algorithms, we have developed and tested a 6-qubits quantum circuit to perform hybrid quantum-classical 
machine learning on the IBM-Aer quantum simulator using PennyLane for binary/multiclass classification. 

 

We are utilizing 4000+ images of the tumor dataset and 1000+ images of the metal corrosion dataset for the development of 
machine learning models in the quantum simulator.  

 

 

 

 



 

 

1. OVERVIEW OF QUANTUM MACHINE LEARNING 
The machine learning algorithm extracts information and then offers predictions informed by the newly sourced data 

samples. In contrast with other mathematical techniques, these algorithms construct and update their predictive model 

based upon known data (the training dataset). Machine learning techniques can apply to different tasks, including: spam 

filtering, image processing, wide societal impact, image recognition, signal processing. 

Myriad advancements in quantum information processing within recent years illustrate that some quantum algorithms can 

provide a speedup over their classical analogues. The application of quantum to the field of classical machine learning may 

produce similar results. Such a combination of quantum computing power and machine learning ideas would be a great 

boost to the quantum information science field and may introduce new practical solutions for current machine learning 

problems. 

 

Quantum computing is an applied field of quantum mechanics combined with computer science, mathematics, and 

physics. The field harnesses the thesis of quantum mechanics to expand the horizon and solve the challenges regarding 

computational capabilities that we face in machine learning.  

 

Quantum computing has an efficiency advantage in multi-dimensional systems and multi-variable statistical analysis. 

Whereas classical systems with many degrees of freedom are difficult to model because of the curse of dimensionality, the 

quantum parallelism effect allows us to avoid this problem. Quantum computational resources are the key to solving a 

variety of problems with expansive dimensions (machine learning, for example). Quantum computing relies on properties 
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of quantum mechanics to compute problems that would be out of reach for classical computers. A quantum computer 

uses qubits, which are like regular bits in a computer with the added ability to be placed into a superposition and share 

entanglements with one another. 

 

Classical computers perform deterministic classical operations or can emulate probabilistic processes using sampling 

methods. By harnessing superposition and entanglement, quantum computers can perform quantum operations that are 

difficult to emulate at scale with classical computers. Ideas for leveraging NISQ quantum computing include optimization, 

quantum simulation, cryptography, and machine learning. 

 

The idea of using quantum mechanics for computations originates from simulating such systems. Feynman (1982) noted 

that simulating quantum systems on classical computers becomes unfeasible as soon as the system size increases, whereas 

quantum particles would not suffer from similar constraints. Deutsch (1985) generalized the idea; he noted that quantum 

computers are universal Turing machines and that quantum parallelism implies that the performance of certain 

probabilistic tasks is faster by any classical means. In this study, we will develop and test a hybrid quantum-classical machine 

learning model on medical images and a random image dataset.  
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2. QUIBIT AND QUANTUM STATE 
The basic element of quantum computing is the quantum bit (qubit), which has two basic states, |0⟩ and |1⟩. The notation 

“|⟩” is called the Dirac notation, and we use it often, as it is the regular notation for states in quantum mechanics.  

|0⟩ = [1, 0] 

|1⟩ = [1, 0] 

It is also possible to form linear combinations of states, often called superpositions. A qubit |ψ⟩, can be seen as a 

generalization of the classical bit, that allows the superposition of |0⟩ and |1⟩ in a state of  

|ψ⟩=α|0⟩ +β|1⟩                                                     … (1) 

where α and β are complex coefficients. For example, a qubit can be in the state  
1
√2

|0⟩ + 1
√2

|1⟩                                                  ... (2) 

which, when measured, gives the result 0 fifty percent (| 1
√2

|2) of the time and the result 1 fifty percent of the time. We will 

return often to this state, which is sometimes denoted as |+⟩. 

For example: Let us put equation (2) in equation (1); therefore, we can say that α= 1
√2

, β= 1
√2

 

|ψ⟩= 1
√2

 [1,0] + 1
√2

 [0,1] 

|ψ⟩= [ 1
√2

, 1
√2

] 

 |ψ⟩= [ α, β] . 

The measurement of a qubit in a superposition state means that it will collapse to one of its basic states, although it is not 

possible to determine which one before measuring it. However, the |α|2 is the probability of having the result 0 for the 
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measurement or the |β|2 is the probability of having the result 1 for the measurement. Therefore,  

|α|2 + |β|2 =1,                                                     … (3) 

since the addition of the probabilities will result in 1.  

Equation (3) can be written as  

|ψ⟩ = eiγ (cos θ/2 |0⟩ + eiψ sinθ/2 |1⟩)                                   … (4) 

where θ, γ, and ψ are real numbers. Since eiγ in the front has no observable effect, we can rewrite the equation (4) as 

|ψ⟩ = cos θ/2 |0⟩ + eiψ sinθ/2 |1⟩                                      … (5)  

The θ and ψ define a point on the unit’s three-dimensional sphere, often referred to as a Bloch sphere. 

 

Figure 1. Bloch sphere representation of a qubit 

Similarly, this can be represented for multiple qubits. For example, let us take a 2-qubit system that has four computational 

basis states, denoted as |00⟩, |01⟩, |10⟩, |11⟩. 



 

5       
 

|ψ⟩=α00|00⟩ + α01|01⟩ + α10|10⟩ + α11|11⟩                              ... (4) 

The Bell state, also referred to as an EPR pair, is an important two-qubit state, which can be represented in the following 

states: 

a) |ψ+⟩=|00⟩ + |11⟩/ √2 

b) |ψ-⟩=|00⟩ - |11⟩/ √2 

c) |ψ+⟩=|01⟩ + |10⟩/ √2 

d) |ψ-⟩=|01⟩ - |10⟩/ √2  

If you want to implement the Bell state |ψ+⟩=|01⟩ + |10⟩/ √2 in python using Qiskit, the circuit will look like this: 

 

Figure 2. Bell state representation for |ψ+⟩ 

This creates the following state vector: 

 

Figure 3. The output for the Bell state representation for |ψ+⟩ 

The operations with qubits are carried out by a unitary transformation “U”. When “U” is applied to a superposition state, the 

result is another superposition state, obtained as the superposition of the corresponding basis vectors. This is an appealing 

characteristic of unitary transformations, which is called quantum parallelism, because it can be employed to evaluate the 
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different values of a function f(x) for a given input x at the same time, although this parallelism may not be immediately 

useful since the direct measurement on the output generally gives only f(x) for one value of x.  

Let |y⟩ be in the superposition state |y⟩= α|0⟩+β|1⟩; the unitary transformation Uy may be defined as: 

Uy: |y,0⟩→|y, f(y)⟩                                                                         (1) 

where |y,0⟩ is the joint state with the first qubit in |y⟩ and the second qubit in |0⟩, and |y, f(y)⟩ stands for the corresponding 

joint output state.  

 

Therefore: 

Uy: |y,0⟩→α|0, f(0)⟩ + β|1, f(1)⟩                                                    (2) 

that contains simultaneous information for f(0) and f(1), i.e., two different values of f(x). This process is known as an oracle 

or quantum black box, can process quantum superposition states with an exponential speed-up compared to classical 

inputs. The idea can be extended to an n-qubit system: 

|θ⟩ = |ψ1⟩ ⊗|ψ2⟩⊗|ψ3⟩⊗|ψ4⟩⊗…. ⊗|ψn⟩                                          (3) 

where ⊗ is the tensor product. The system as shown in Eq. (3) can simultaneously process states, but only one of them 

could be accessible by means of direct measurement. 

QC and ML have converged towards a new discipline, Quantum Machine Learning (QML); QML can bring together the 

concepts from both fields to build an enhanced solution by either improving ML algorithms, quantum experiments, or 

both. 
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3. QUANTUM GATES 
To build the above equations in qubit and quantum states, we plan to use a quantum circuit model for computation. The 

quantum gate is the basic building block for the quantum circuit on which qubits operate and functions similarly to the 

classical logic gate for conventional digital circuits. 

Unlike classical logic gates, quantum gates perform reversible computation as no information can ever be erased; the input 

can always be recovered from the output. We have explored two different techniques to provide reversible circuit-based 

models capable of universal computation, which are as follows: 

• A computer developed totally of billiard balls and mirrors, provides a beautiful concrete realization of the principles 

of reversible computation, and; 

• A technique based on the Toffoli gate (a reversible logic gate), which can perform any computation that a classical 

computer can. 

Hence, the quantum gates are represented by unitary matrices, which show that quantum gates in the circuits always have 

the number of inputs = the number of outputs. Some of the basic gates are as follows: 

• Pauli-X: 𝑋𝑋 = �0 1
1 0� ≡ 𝜎𝜎𝑋𝑋  ….. It maps |0⟩ to |1⟩ and |1⟩ to |0⟩. It is equivalent to a NOT gate. 

• Pauli-Y: 𝑌𝑌 = �0 −𝑖𝑖
𝑖𝑖 0 � ≡ 𝜎𝜎𝑌𝑌 ….. It maps |0⟩ to i |1⟩ and |1⟩ to −i |0⟩. 

• Pauli-Z: 𝑍𝑍 = �1 0
0 −1� ≡ 𝜎𝜎𝑍𝑍 ….. Also called a phase-flip, it leaves the basis state |0⟩ unchanged and maps |1⟩ to −|1⟩. 

• Hadamard: H= 1
√2
�0 1

1 0� ….. It creates a superposition by mapping |0⟩ to 1
√2

(|0⟩ + |1⟩)  and |1⟩ to 1
√2

(|0⟩ − |1⟩). 
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• Phase shift: 𝑆𝑆 = 1
√2
�1 0

0 𝑒𝑒𝑖𝑖ψ� ….. It leaves the basis state |0⟩ unchanged and maps |1⟩ to eiψ |1⟩. 

• Controlled NOT: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  �

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

� …. It acts on 2 qubits and performs the NOT operation on the target qubit only 

when the control qubit is |1⟩. 

• SWAP: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

�  …. It acts on 2 qubits and swaps these two qubits. 
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4. ALGORITHMS 
4.1 DEUTSCH-JOZSA  

The Deutsch-Jozsa problem was the first quantum algorithm that performed better than any classical algorithm. A 

hidden Boolean function, f, takes a string of bits as the input and returns either 0 or 1: 

f({x0, x1, x2,...})→0 or 1 , where xn is 0 or 1 

 

Figure 4. The circuit diagram for the Deutsch-Jozsa  

The property of the given Boolean function is guaranteed to either be balanced or constant. A constant function 

returns all 0's or all 1's for any input, while a balanced function returns 0's for exactly half of all inputs and 1's for the 

other half. Our task is to determine whether the given function is balanced or constant. 

Note that the Deutsch-Jozsa problem is an n-bit extension of the single-bit Deutsch problem. 

Classical Solution: 

For the case of deterministic classical algorithms, if f is balanced, then there are 2𝑛𝑛/2 inputs x yielding f(x) = 0 and 

2𝑛𝑛/2 inputs x yielding f(x) = 1. Thus, in the worst case, an algorithm might be very unlucky and have its first 2𝑛𝑛/2 
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queries return value f(x) = 0, only to have query 2𝑛𝑛/2 + 1. In this setting, the Deutsch-Jozsa algorithm yields an 

exponential improvement over classical algorithms, requiring just a single query to f. 

Quantum Solution: 

Inputs: (1) A black box Uf performs the transformation |x⟩|y⟩ → |x⟩|y ⊕ f(x) ⟩ for x ∈ {0, . . . , 2n − 1} and f(x) ∈ {0, 1}. It 

is known that f(x) is either constant for all values of x or f(x) is balanced, that is, equal to 1 for exactly half of all the 

possible x and 0 for the other half. 

 

Outputs: 0 if and only if f is constant. 

 

Runtime: One evaluation of Uf. Always succeeds. 

 

Procedure: 

• |0⟩⊗n|1⟩                                     Initialize state. 

•  →  1
√2𝑛𝑛

∑ |𝑥𝑥2𝑛𝑛−1
𝑥𝑥=0 ⟩  �|0⟩−|1⟩

√2
�       Create superposition using Hadamard gates. 

• →  1
√2
∑ (−1)𝑓𝑓(𝑥𝑥)
𝑥𝑥 |𝑥𝑥⟩  �|0⟩−|1⟩

√2
�      Calculate function f using Uf. 

• → ∑ ∑ (−1)𝑥𝑥.𝑧𝑧+𝑓𝑓(𝑥𝑥)|𝑧𝑧⟩
√2𝑛𝑛𝑥𝑥𝑧𝑧  �|0⟩−|1⟩

√2
�      Perform Hadamard transformation. 

• → 𝑧𝑧                         Measure to obtain final output z. 
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4.2 BERNSTEIN-VAZIRANI (BV) 

The Bernstein-Vazirani is an improvised version of the Deutsch-Jozsa algorithm. In the Deutsch-Jozsa algorithm, 

there is no scaling; the function of interest only acts on one bit. Therefore, we cannot scale the problem up to larger 

bits and see how the complexity scales. 

The Bernstein-Vazirani (BV) algorithm presents us with a quantum algorithm whose complexity scales better than 

the best classical algorithms. Namely, the quantum algorithm will give us a linear speedup in the number of queries 

relative to the best classical algorithm. The complexity is in terms of the number of queries to an oracle, so the 

speedup is also in the terms of the number of queries. 

Problem: Given an oracle access to f : {0, 1}n → {0, 1} and a promise that the function f(x) = s·x (∑ si · xi𝑛𝑛
𝑖𝑖=1 ) in 𝐹𝐹2𝑛𝑛 or 

f(x)=s⋅x (mod 2), where the algorithm is trying to find s, which is a secret string. 
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Figure 5. The circuit diagram for the Bernstein-Vazirani  

 

 

The Classical Solution: 

Classically, the oracle returns fs(x)=s⋅x mod2 given an input x. Thus, the hidden bit string s can be revealed by 

querying the oracle with the sequence of inputs, such as: 

f(100...0n) = s1 

f(010...0n) = s1 

f(001...0n) = s1 

. 

. 

. 

f(000...1n) = s1 , 

where each query reveals a different bit of s (the bit si). For example, with x=100...0n one can obtain the least 

significant bit of s, with x = 0100...0 we can find the next least significant, and so on. Therefore, we would need to 

call the function fs (x) n times. 

 

The Quantum Solution: 

Using a quantum computer, we can solve this problem with total confidence after only one call to the 

function f(x)f(x). The quantum Bernstein-Vazirani algorithm to find the hidden bit string is very simple:  

Procedure: 
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• |0⟩⊗𝑛𝑛                 Initialize state to the |0⟩⊗𝑛𝑛 state, and output qubit to |−⟩. 

• → |+⟩⊗𝑛𝑛 =  1
√2

 ∑ |x⟩𝑥𝑥∈{0,1}𝑛𝑛     Apply Hadamard gates to the input register. 

• →  1
√2𝑛𝑛

 ∑ (−1)𝑓𝑓(𝑥𝑥) |x⟩ =  1
√2𝑛𝑛

 ∑ (−1)𝑠𝑠∙𝑥𝑥 |x⟩ =  1
2

 ( |0⟩ + (−1)𝑠𝑠1  |1⟩) ⊗  1
2

 ( |0⟩ + (−1)𝑠𝑠2  |1⟩) ⊗ . .𝑥𝑥 .𝑥𝑥    Apply 

Hadamard gates to the output register. 

• → 0 if si =0 and 1 if si=1                         Measure to obtain final output s. 

 

If the same problem statement is passed to both the Bernstein-Vazirani and the Deutsch-Jozsa algorithm with a 

similar circuit: 

 

Figure 6. Represents the differences and similarities between the Deutsch-Jozsa and Bernstein-Vazirani algorithms 
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4.3 SIMON’S 

Simon's algorithm was the first quantum algorithm to show an exponential speed-up against the best classical 

algorithm when solving a specific problem. 

It has inspired the quantum algorithms based on the quantum Fourier transform and is utilized in the most 

famous quantum algorithm, Shor's factoring algorithm.

 

Figure 7. The circuit diagram for Simon’s algorithm 

Problem:  

In Simon’s problem, we are provided with a function from n bit strings to n bit strings, 

f : {0, 1}n → {0, 1}n, 

such that for all x,y ∈{0,1}n. 

For given x, y: f(x) = f(y) ⇐⇒ x = y⊕b.  

Simon’s problem is then, by querying f(x), to determine whether the function belongs to (i) b = 0n or to (ii) b ≠ 0n 

when ⊕ denotes bitwise addition module two. 
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Classical Solution: 

If we want to know what b is with 100% certainty for a given f, we must check up to 2n−1+1 inputs, where n is the 

number of bits in the input. This means checking just over half of all the possible inputs until we find two cases of 

the same output. Much like the Deutsch-Jozsa problem, if we get lucky, we could solve the problem within our first 

two tries. But if we happen to get an f that is one-to-one or get unlucky with an f that’s two-to-one, then we’re stuck 

with the full 2n−1+1. There are known algorithms that have a lower bound of Ω(2n/2), but the complexity grows 

exponentially with n. 

Quantum Solution: 

The circuit uses 2n qubits arranged in two registers of n qubits each. Note that we’re using a single line in the top 

register to represent n qubits and similarly in the bottom register. 

Procedure: 

• |0⟩⊗𝑛𝑛|0⟩⊗𝑛𝑛                          Initialize state to the |0⟩⊗𝑛𝑛 state.  

• → 1
√2𝑛𝑛

∑ |𝑥𝑥⟩|0⟩⊗𝑛𝑛 𝑥𝑥𝑥𝑥{0,1}𝑛𝑛         Apply Hadamard gates to the input register. 

• →  1
√2𝑛𝑛

∑ |x⟩𝑥𝑥∈{0,1}𝑛𝑛 |f(x)⟩       Apply query function Qf. 

• →  1
√2

(|x⟩ + |y⟩)                   Output from the first register 

• →  1
2𝑛𝑛
∑ [(−1)𝑥𝑥.𝑧𝑧 + (−1)𝑦𝑦.𝑧𝑧]𝑧𝑧∈{0,1}𝑛𝑛 |𝑧𝑧⟩    If f(x) is two-to-one, the state  1

√2
(|x⟩ + |y⟩). 

• → (−1)𝑥𝑥.𝑦𝑦 = (−1)𝑦𝑦.𝑧𝑧               Output from the first register 

Using the criterion for Simon’s problem, (f(x)=f(y)⟹x=y⊕s), we found that: 

• x.y=y.z               mod 2 

• x.z=(x⊕s).z       mod 2 
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• x.z=x.z⊕s.z       mod 2 

• 0=s.z                  mod 2 

Therefore, when we run the above quantum circuit each time, we get a bit string z which is orthogonal to the secret string s.             

4.4 SHOR’S 

Peter Shor released the quantum order-finding algorithm in a seminal paper in 1994 and noted that the problems 

with performing discrete logarithms and factoring can be reduced to order-finding. The final paper, including 

extended discussion and references, was published in 1997. 

Shor’s algorithm is an integer factorization quantum algorithm based upon the Fourier transformation. Today, the 

best-known classical algorithm requires super polynomial time to factor the product of two primes; the widely used 

cryptosystem, RSA (Rivest–Shamir–Adleman), relies on factoring being impossible for large enough integers. 

Communication security is heavily dependent on the application of RSA encryption. This method relies on the 

inaccessibility of large prime factors of a large composite number. In simple terms, the problem statement it solves 

is: the encrypter takes two (or more) large primes and multiplies them. The decrypter arduously tries to work 

backwards from the product to the factors.  

A 193 decimal digital, which is known as RS-640, has taken approximately 30 2.2GHz-Opteron-CPU years, and over 

five months of calendar time, to solve. 

Shor’s algorithm consists of two parts: 

• Performed on classical computers: The classical part reduces the factorization to a problem of finding the 

period of the function. 
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• Performed on quantum machines: The quantum part uses a quantum computer to find the period using the 

Quantum Fourier Transform (QFT). 

We will focus on the second part performed on quantum computers. Shor’s algorithm can solve the problem of 

period finding; since a factoring problem can be converted into a period finding problem in polynomial time, an 

efficient period finding algorithm can also be used to factor integers efficiently. The following steps need to be 

considered for the development of the algorithms: 

• If n is even, prime, or a prime power, then exit. 

• Pick a random integer x < n and compute gcd (x, n). If it is not 1, then we have achieved a factor of n. 

• Quantum algorithm: 

Pick q as the smallest power of 2 with n2 ≤ q < 2n2 . 

Find period r of xa mod n. 

The measurement gives us a variable c, which has the property 𝑐𝑐
𝑞𝑞
≈ 𝑑𝑑

𝑟𝑟
  where d ∈ N, where q is the dimension 

of a Hilbert space. 

• To find d, r via continued fraction expansion algorithm. d and r are only determined if gcd(d, r) = 1 (reduced 

fraction). 

• If r is odd, go back to 2. If 𝑥𝑥
𝑟𝑟
2≡ −1 mod n, go back to 2. Otherwise, the factors p, q = gcd( 𝑥𝑥

𝑟𝑟
2± 1, n). 

From a cryptography perspective, Shor’s algorithm is very important as it can factor large numbers much faster than 

classical algorithms (polynomial instead of exponential). NIST has initiated a process to solicit, evaluate, and 
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standardize one or more quantum-resistant public-key cryptographic algorithms. 

 

 

4.5 VARIATIONAL QUANTUM LINEAR SOLVER (VQLS) 

The VQLS algorithm is a variational quantum algorithm that utilizes a Variational Quantum Eigensolver (VQE) to 

solve systems of linear equations more efficiently than a classical computational algorithm. The output from the 

VQLS is similar to the Harrow-Hassidim-Lloyd (HHL) quantum linear-solver algorithm, except the HHL provides 

computation speedup that is advantageous over VQLS and requires a more robust fault-tolerant quantum hardware 

along with many qubits to perform computations. 

 

Figure 10. The top overview of the VQLS algorithm 

VHQCAs can help reduce quantum circuit depth at the cost of additional classical optimization. Particularly, VHQCAs 
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can employ a short-depth quantum circuit to evaluate a cost function, which requires the parameters of a quantum 

gate sequence, and then leverage well-established classical optimizers to minimize this cost function. 

As shown in Figure 10, the input A-matrix is a linear combination of unitary Al and a short-depth quantum circuit U 

which develop the state |b⟩, sent to the VQLS algorithm. The output of the VQLS algorithm provides a variationally 

quantum state of |x⟩ which can also be stated as a linear system: A|x⟩ = |b⟩. The parameters ∝ in the V(∝) are adjusted 

in the hybrid quantum-classical optimization loop until the cost  C(∝) is reached below a user-specified threshold 

limit.  

When it reaches the threshold limit, the loop is terminated and the resulting ∝𝑜𝑜𝑜𝑜𝑜𝑜is passed to the sequencing gate 

V(∝𝑜𝑜𝑜𝑜𝑜𝑜), which builds a state of |x⟩ = 𝑥𝑥
||𝑥𝑥||2

 from which observable quantities can be computed. Furthermore, the final 

value of the cost C(∝𝑜𝑜𝑜𝑜𝑜𝑜) provides an upper bound on the deviation of observables measured |x⟩ from observables 

measured on the exact solution. 
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4.6 HYBRID QUANTUM-CLASSICAL NEURAL NETWORK (HQCNN) 

The hybrid quantum-classical neural network approach has the potential to solve today’s computational problems 

in machine learning, which are not feasible to solve with classical computing. To develop an HQCNN architecture, 

the last layer of the classical layer can utilize a parameterized quantum circuit.  

Parameterized quantum circuits (PQCs) offer a solid way to implement many algorithms and demonstrate 

quantum supremacy in the noisy intermediate-scale quantum (NISQ) era. The PQCs consist of fixed gates e.g., 

controlled NOTs (CNOTs), and adjustable gates, e.g., qubit rotations, that are dependent on the classical input 

vector.  
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Figure 8. The PQCs architecture used to integrate the classical and quantum layers 

As shown in Figure 8, the convolutional neural network (CNN) architecture consists of interconnected 

convolutional layers and pooling layers, ending with a fully connected layer. The output from the last layer of the 

classical layer is utilized as an input to the quantum layer using PQCs. The is a non-linear function and is the value 

of neuron i at each hidden layer.  represents any rotation gate about an angle equal to and y is the final prediction 

value generated from the hybrid network. 

 

Figure 9. The HQCNN architecture  

The primary objective of the classical convolutional layers is to extract the features from the inputs passing 

through these layers using a filter, which also requires a high computationally intensive step of CNN (shown in 

Figure 9, an HQCNN architecture where input is a 2x2 matrix which passes through a 6-filter quantum 

convolutional layers).  

Each filter takes a 2x2 matrix and converts it into a separable 4-qubit quantum state then changes this state with a 
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PQCs. In the case of images encoded as a 3-dimensional matrix, the filter only works on the first two dimensions. 

At the end of the quantum filter, a correlational measurement is performed on the output of the quantum state 

and a scalar is found. On collecting all the scalar outputs, the final output of the quantum convolutional layer is a 

3-dimensional matrix. A pooling layer is used to reduce the dimension of the data and it can be repeated to end 

with a fully connected layer.  

To see the implementation results please check the circuit design and testing section. 
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5. DESIGN & TESTING 
For development and testing, we are building our classification model by utilizing a PyTorch integration with a 

Qiskit-Aer simulator using PennyLane. In this development, we are employing the hybrid-classical neural network 

approach, which is utilized for the development of a classification task with a pretrained neural network 

architecture (ResNet-18) for classifying the images.  

 

Figure 11. The architecture for the development of the hybrid quantum-classical ML 

For study purposes, we are utilizing PyTorch integration with the Qiskit-Aer simulator using PennyLane to build 

our classification model. In this development, we are utilizing the hybrid-classical neural network approach, which 
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is used for the development of a classification task with a pre-trained neural network architecture (ResNet-18) for 

classifying the images. Additionally, there are various connectors available, such as Pennylane, which can help to 

connect the PyTorch/TensorFlow conveniently to multiple quantum simulators and real quantum computers at 

the backend. 

As shown in Figure 12, we have developed a quantum circuit for a multi-class hybrid classical model, which utilizes 

6 qubits for the multiclass classification.
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Figure 12. The quantum circuit for hybrid quantum-classical neural networks (HQCNN) for multi-class image 

classification 

At the initial level, the 6-qubits are introduced to the Hamdard(H) gate to bring them to their superposition states. 

As the data embedding layer that takes inputs from the previous layer of the neural network, the output states from 

the H gate are processed with the Rotational Y (Ry) gate.  

 

Figure 13. The entanglement layer created using Controlled Z(Cz) gate 

The parametrized quantum circuit utilizes the Controlled Z(Cz) gate as an entanglement layer combined with 

Rotational Y (Ry) and Rotational Z (Rz) gate, which is repeated 6 times. The output from the last entanglement layer 

is rotated using the Rotational X(Rx) along with the H gate, and the result is measured in the Z-basis state from the 

quantum layer. To maintain the symmetry between the classical and quantum models’ hyperparameters, we have 

utilized the cross-entropy loss function with Adam optimizer and a learning rate of 0.001 and 0.0004. 

We have tested the above quantum circuit on two different datasets: brain tumor and corrosion. We have created 

a custom brain tumor dataset containing 4500+ images to develop a multi-class brain tumor classification model. 
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We have utilized transfer learning to replace the last layer for the resnet-18 with a quantum layer, which is then re-

trained on the local quantum simulators for the development of the brain tumor model.  

Table 1. Hyper-parameter values used for the classification model on different image datasets 

Parameters Metal Corrosion Brain Tumor 

Quantum Depth 31 31 

Number of Epochs 100 200 

Batch Size 8 16 

Learning Rate 0.0004 0.001 

Max Accuracy Achieved 

During Iterations  

100% 96.62% 

We have tested another dataset of metal corrosion; we developed a custom metal corrosion dataset containing 

1000+ images to develop a corrosion classification model. 

The output from the quantum simulator for the two datasets are as follows: 

Table 2. The output results from the metal corrosion dataset 

Dataset Metal Corrosion 

Best Accuracy 100% 
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Test Results 

 

Accuracy Results 
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Loss Results 

 

Evaluation Metrics 

 

Table 4. The output results from the brain tumor dataset 

Dataset 
Brain Tumor 

(Multi-class) 

Best Accuracy 96.62% 



 

29       
 

Test Results 

 

Accuracy Results 
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Loss Results 

 

Evaluation Metrics 
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6. CONCLUSION 
With the advancement in computational power and algorithmic advances, machine learning techniques are becoming 

more powerful in identifying patterns within the data. Today’s quantum system can achieve the capability to produce a 

typical pattern that a classical system will not be able to produce efficiently, so it is sensible to propose that quantum 

machine learning may outperform classical machine learning tasks. 

To develop this study on quantum machine learning, we have gone through various basic concepts of quantum computing 

which have helped us to develop the quantum circuit and explore various quantum algorithms for the development of the 

hybrid quantum-classical architecture. We have utilized PennyLane to integrate PyTorch with the IBM-Aer quantum 

simulator to develop a hybrid quantum-classical machine learning model.  

During the test, we explored that the hybrid quantum machine learning model provided a high accuracy within a short 

span of time with a quantum depth of 31. Thus, indicating the superior properties of the quantum machine learning 

process. In the future, this study can be extended to other quantum machine learning algorithms, the impact of the 

quantum circuit depth and noise from the circuit which might have impact on the accuracy and training time of the model 

for multiple industries. 
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8. GLOSSARY 
|0⟩ Qubit state with vector output (1, 0) 
|1⟩ Qubit state with vector output (0,1) 
σx, σy and σz Pauli sigma matrices 
⊕  Modulo two additions 
U Unitary operator or matrix 
H Hadamard gate 
α, β, γ, and δ Real-valued number 
|ψ⟩ Superpositions 
|+⟩ Positive state phase 
|-⟩ Negative state phase 
θ and ψ  Point on the unit’s three-dimensional sphere 
|ψ+⟩ Positive phase state 
|ψ-⟩ Negative phase state 
⊗  Tensor product 
I Identity Matrix 
H⊗n Parallel action of n Hadamard gates 
Rx Rotational X gate 
Ry Rotational Y gate 
Rz Rotational Z gate 
† Hermitian conjugate 
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